资源类型

期刊论文 1423

年份

2023 90

2022 101

2021 88

2020 105

2019 100

2018 74

2017 76

2016 53

2015 70

2014 63

2013 55

2012 53

2011 67

2010 69

2009 60

2008 54

2007 59

2006 58

2005 24

2004 18

展开 ︾

关键词

技术预见 5

仿真 4

有限元法 4

神经网络 4

预测 4

隧道施工 3

2035年 2

CAN总线 2

DSM(设计结构矩阵) 2

TRIZ 2

一阶分析法 2

上限法 2

优化设计 2

参数估计 2

可靠性 2

多目标优化 2

实时控制 2

实时服务 2

悬索桥 2

展开 ︾

检索范围:

排序: 展示方式:

A dynamic model of mobile concrete pump boom based on discrete time transfer matrix method

Wu REN, Yunxin WU, Zhaowei ZHANG

《机械工程前沿(英文)》 2013年 第8卷 第4期   页码 360-366 doi: 10.1007/s11465-013-0280-8

摘要:

Mobile concrete pump boom is typical multi-body large-scale motion manipulator. Due to posture constantly change in working process, kinematic rule and dynamic characteristic are difficult to solve. A dynamics model of a mobile concrete pump boom is established based on discrete time transfer matrix method (DTTMM). The boom system is divided into sub-structure A and sub-structure B. Sub-structure A is composed by the 1st boom and hydraulic actuator as well as the support. And sub-structure B is consists of the other three booms and corresponding hydraulic actuators. In the model, the booms and links are regarded as rigid elements and the hydraulic cylinders are equivalent to spring-damper. The booms are driven by the controllable hydraulic actuators. The overall dynamic equation and transfer matrix of the model can be assembled by sub-structures A and B. To get a precise result, step size and integration parameters are studied then. Next the tip displacement is calculated and compared with the result of ADAMS software. The displacement and rotation angle curves of the proposed method fit well with the ADAMS model. Besides it is convenient in modeling and saves time. So it is suitable for mobile concrete pump boom real-time monitoring and dynamic analysis. All of these provide reference to boom optimize and engineering application of such mechanisms.

关键词: multi-body     mobile concrete pump boom     discrete time transfer matrix method (DTTMM)     kinematic     dynamic     tip displacement    

A model reference adaptive control based method for actuator delay estimation in real-time testing

Cheng CHEN, James M. RICLES

《结构与土木工程前沿(英文)》 2010年 第4卷 第3期   页码 277-286 doi: 10.1007/s11709-010-0072-8

摘要: Real-time testing provides a viable experimental technique to evaluate the performance of structural systems subjected to dynamic loading. Servo-hydraulic actuators are often utilized to apply calculated displacements from an integration algorithm to the experimental structures in a real-time manner. The compensation of actuator delay is therefore critical to achieve stable and reliable experimental results. The advances in compensation methods based on adaptive control theory enable researchers to accommodate variable actuator delay and achieve good actuator control for real-time tests. However, these adaptive methods all require time duration for actuator delay adaptation. Experiments show that a good actuator delay estimate can help optimize the performance of the adaptive compensation methods. The rate of adaptation also requires that a good actuator delay estimate be acquired especially for the tests where the peak structural response might occur at the beginning of the tests. This paper presents a model reference adaptive control based method to identify the parameter of a simplified discrete model for servo-hydraulic dynamics and the resulting compensation method. Simulations are conducted using both numerical analysis and experimental results to evaluate the effectiveness of the proposed estimation method.

关键词: real-time testing     actuator delay     compensation     adaptive control     MIT rule     discrete transfer function    

Gained switching-based fuzzy sliding mode control for a discrete-time underactuated robotic system with

Hui LI, Ruiqin LI, Jianwei ZHANG

《机械工程前沿(英文)》 2021年 第16卷 第2期   页码 353-362 doi: 10.1007/s11465-020-0620-4

摘要: This study proposes a gained switching-based discrete-time sliding mode control method to address the chattering issue in disturbed discrete-time systems, which suffer from various unknown uncertainties. Through the new structure of the designed reaching law, the proposed method can effectively increase the convergence speed while guaranteeing chattering-free control. The performance of controlling underactuated robotic systems can be further improved by the adoption of fuzzy logic to perform adaptive online hyper-parameter tuning. In addition, an underactuated robotic system with uncertainties is studied to validate the effectiveness of the proposed reaching law. Results reveal the dynamic performance and robustness of the proposed reaching law in the studied system and prove the proposed method’s superiority over other state-of-the-art methods.

关键词: sliding-mode control     robot control     discrete-time uncertain systems     fuzzy logic    

Application of coupled multi-body dynamics–discrete element method for optimization of particle damper

Danhui DAN, Qianqing WANG, Jiongxin GONG

《结构与土木工程前沿(英文)》 2021年 第15卷 第1期   页码 244-252 doi: 10.1007/s11709-021-0696-x

摘要: With the application of the particle damping technology to cable vibration attenuation, the rootless cable damper overcomes the limit in installation height of existing dampers. Damping is achieved through energy dissipation by collisions and friction. In this paper, a coupled multi-body dynamics–discrete element method is proposed to simulate the damping of the damper–cable system under a harmonic excitation. The analyses are done by combining the discrete element method in EDEM and multi-body dynamics in ADAMS. The simulation results demonstrate the damping efficiency of rootless particle damper under different excitations and reveal the influence of the design parameters on its performance, including the filling ratio, particle size, coefficient of restitution, and coefficient of friction.

关键词: granular material     vibration control     discrete element method     particle damper     cable vibration    

Improving existing “reaching law” for better discrete control of seismically-excited building structures

Zhijun LI, Zichen DENG

《结构与土木工程前沿(英文)》 2009年 第3卷 第2期   页码 111-116 doi: 10.1007/s11709-009-0022-5

摘要: In this paper, a novel “composite reaching law” was explained in details: 1) the equation of discrete motion for a control system; 2) the design of discrete-time variable structure control. In addition, the model of a three-storey shear-type building structure was used to verify the effectiveness of the discrete variable structure control method. The results of numerical example analysis of the model show that the control law can effectively reduce the peak value of seismic response of the building structure and the chattering effect of the control system.

关键词: discrete-time variable structure control     composite reaching law     chattering effect     saturated control law    

3D mode discrete element method with the elastoplastic model

Wei HU, Feng JIN, Chong ZHANG, Jinting WANG

《结构与土木工程前沿(英文)》 2012年 第6卷 第1期   页码 57-68 doi: 10.1007/s11709-012-0139-9

摘要: The three-dimensional mode-deformable discrete element method (3MDEM) is an extended distinct element approach under the assumptions of small strain, finite displacement, and finite rotation of blocks. The deformation of blocks is expressed by the combination of the deformation modes in 3MDEM. In this paper, the elastoplastic constitutive relationship of blocks is implemented on the 3MDEM platform to simulate the integrated process from elasticity to plasticity and finally to fracture. To overcome the shortcomings of the conventional criterion for contact fracturing, a new criterion based on plastic strain is introduced. This approach is verified by two numerical examples. Finally, a cantilever beam is simulated as a comprehensive case study, which went through elastic, elastoplastic, and discontinuous fracture stages.

关键词: mode discrete element method     elastoplastic     numerical method     discontinuum     contact    

A “Sequential Design of Simulations” approach for exploiting and calibrating discrete element simulations

《化学科学与工程前沿(英文)》 2022年 第16卷 第6期   页码 874-885 doi: 10.1007/s11705-021-2131-1

摘要: The flow behaviours of cohesive particles in the ring shear test were simulated and examined using discrete element method guided by a design of experiments methodology. A full factorial design was used as a screening design to reveal the effects of material properties of partcles. An augmented design extending the screening design to a response surface design was constructed to establish the relations between macroscopic shear stresses and particle properties. It is found that the powder flow in the shear cell can be classified into four regimes. Shear stress is found to be sensitive to particle friction coefficient, surface energy and Young’s modulus. A considerable fluctuation of shear stress is observed in high friction and low cohesion regime. In high cohesion regime, Young’s modulus appears to have a more significant effect on the shear stress at the point of incipient flow than the shear stress during the pre-shear process. The predictions from response surface designs were validated and compared with shear stresses measured from the Schulze ring shear test. It is found that simulations and experiments showed excellent agreement under a variety of consolidation conditions, which verifies the advantages and feasibility of using the proposed “Sequential Design of Simulations” approach.

关键词: discrete element method     cohesive materials     parameter calibration     ring shear cell     design of experiments    

基于子空间的离散时滞系统辨识 Article

Qiang LIU,Jia-chen MA

《信息与电子工程前沿(英文)》 2016年 第17卷 第6期   页码 566-575 doi: 10.1631/FITEE.1500358

摘要: 本文研究了具有未知时延的线性随机时滞系统的辨识问题。时滞系统被表达为具有单一时延的时滞差分方程。首先利用状态增广方法将时滞系统转化为一个等价的线性时不变系统,然后采用传统的子空间辨识方法来估计增广系统矩阵。本文提出了一种ACS算法,从而得到时滞系统的状态空间模型。最后,基于ACS算法得到的相似变换,重新得到卡尔曼状态序列。采用最小二乘法,利用卡尔曼状态序列和输入输出数据,得出相同状态空间下的时滞系统矩阵。仿真结果表明了这种算法的有效性。

关键词: 辨识问题;时滞系统;子空间辨识方法;ACS算法;最小二乘法    

numerical framework for underground structures in layered ground under inclined P-SV waves using stiffness matrix

《结构与土木工程前沿(英文)》 2023年 第17卷 第1期   页码 10-24 doi: 10.1007/s11709-022-0904-3

摘要: A numerical framework was proposed for the seismic analysis of underground structures in layered ground under inclined P-SV waves. The free-field responses are first obtained using the stiffness matrix method based on plane-wave assumptions. Then, the domain reduction method was employed to reproduce the wavefield in the numerical model of the soil–structure system. The proposed numerical framework was verified by providing comparisons with analytical solutions for cases involving free-field responses of homogeneous ground, layered ground, and pressure-dependent heterogeneous ground, as well as for an example of a soil–structure interaction simulation. Compared with the viscous and viscous-spring boundary methods adopted in previous studies, the proposed framework exhibits the advantage of incorporating oblique incident waves in a nonlinear heterogeneous ground. Numerical results show that SV-waves are more destructive to underground structures than P-waves, and the responses of underground structures are significantly affected by the incident angles.

关键词: underground structures     seismic response     stiffness matrix method     domain reduction method     P-SV waves    

一种具有高电压传输比的新型Cuk矩阵变换器

张小平,朱建林,唐华平,张炳根,柳莎莎

《中国工程科学》 2008年 第10卷 第4期   页码 78-83

摘要:

对传统矩阵变换器存在电压传输比低的缺陷进行研究,提出一种新型的称为Cuk矩阵变换器的电路拓扑结构。介绍了该拓扑结构的基本构成及其工作原理,推导了其电压传输比与占空比之间函数关系的解析表达式,阐述了所采用的双闭环控制策略的基本设计方法,并通过仿真对其有效性和可行性进行了验证。结果表明:该拓扑结构能实现输出电压和频率的任意调节,其电压传输比可大于1,也可小于1,且直接输出标准的正弦波而无需滤波环节,有效地解决了传统矩阵变换器电压传输比低的难题,具有一定的应用价值。

关键词: Cuk矩阵变换器     电路拓扑     电压传输比     双闭环控制     仿真    

Buffer capacity of granular matter to impact of spherical projectile based on discrete element method

Ying YAN, Pengfei LI, Shunying JI

《结构与土木工程前沿(英文)》 2013年 第7卷 第1期   页码 50-54 doi: 10.1007/s11709-013-0186-x

摘要: Granular matter possesses impact-absorbing property due to its energy dissipation character. To investigate the impact-absorbing capacity of granular matter, the discrete element method (DEM) is adopted to simulate the impact of a spherical projectile on to a granular bed. The dynamic responses of the projectile are obtained for both thin and thick granular bed. The penetration depth of the projectile and the first impact peak are investigated with different bed thicknesses and impact velocities. Determining a suitable bed thickness is crucial to the buffering effect of granular matter. The first impact peak is independent of bed thickness when the thickness is larger than the critical thickness.

关键词: granular matter     impact peak     buffer capacity     discrete element method     critical thickness    

Discrete element method modeling of corn-shaped particle flow in rectangular hopper

He TAO, Baosheng JIN, Wenqi ZHONG, Xiaofang WANG,

《结构与土木工程前沿(英文)》 2010年 第4卷 第2期   页码 267-275 doi: 10.1007/s11709-010-0035-0

摘要: Discrete element method (DEM) was developed to simulate the corn-shaped particles flow in the hopper. The corn-shaped particle was described by four overlapping spheres. Contact force and gravity force were considered when establishing the model. In addition, flowing characteristic of particles in the hopper was studied. The effect of friction coefficient on the wall pressure, voidage and velocity distribution was analyzed. The results show that the discharge rate decreases with the friction coefficient increasing; and the “over-pressure” phenomenon occurs in the discharging process for two different friction coefficients. The voidage also increases as the friction coefficient increasing. And the velocity distribution is more uniformity and is closer to the mass flow with the friction coefficient deceasing.

关键词: discrete         element          method         (DEM)             non-spherical     voidage     pressure     velocity distribution     hopper    

多体系统发射动力学及其应用

芮筱亭

《中国工程科学》 2011年 第13卷 第10期   页码 76-82

摘要:

射击精度差、试验用弹量大、发射不安全是制约现代火箭、火炮武器发展的三大技术难题。武器系统精度和发射安全性取决于武器系统动力学规律,发射动力学作为研究武器系统发射过程中受力和运动规律的一门新兴综合工程学科,在国际上已成为提高火箭和火炮武器系统射击精度和发射安全性的新技术突破口,为射击精度和发射安全性设计与试验提供新理论与技术。文章研究多体系统发射动力学理论与技术及其在火箭和火炮武器射击精度和安全性设计与试验中的应用。

关键词: 射击精度     试验用弹量     发射安全性     多体系统发射动力学     多体系统传递矩阵法    

Model test and discrete element method simulation of shield tunneling face stability in transparent clay

Huayang LEI, Yajie ZHANG, Yao HU, Yingnan LIU

《结构与土木工程前沿(英文)》 2021年 第15卷 第1期   页码 147-166 doi: 10.1007/s11709-020-0704-6

摘要: The stability of the shield tunneling face is an extremely important factor affecting the safety of tunnel construction. In this study, a transparent clay with properties similar to those of Tianjin clay is prepared and a new transparent clay model test apparatus is developed to overcome the “black box” problem in the traditional model test. The stability of the shield tunneling face (failure mode, influence range, support force, and surface settlement) is investigated in transparent clay under active failure. A series of transparent clay model tests is performed to investigate the active failure mode, influence range, and support force of the shield tunneling face under different burial depth conditions, whereas particle flow code three-dimensional numerical simulations are conducted to verify the failure mode of the shield tunneling face and surface settlement along the transverse section under different burial depth conditions. The results show that the engineering characteristics of transparent clay are similar to those of soft clay in Binhai, Tianjin and satisfy visibility requirements. Two types of failure modes are obtained: the overall failure mode (cover/diameter: / ≤1.0) and local failure mode ( / ≥2.0). The influence range of the transverse section is wider than that of the longitudinal section when / ≥2.0. Additionally, the normalized thresholds of the relative displacement and support force ratio are 3%–6% and 0.2–0.4, respectively. Owing to the cushioning effect of the clay layer, the surface settlement is significantly reduced as the tunnel burial depth increases.

关键词: shield tunneling face     stability     transparent clay     model test     numerical simulation    

High-efficiency inspecting method for mobile robots based on task planning for heat transfer tubes in

《机械工程前沿(英文)》 2023年 第18卷 第2期 doi: 10.1007/s11465-022-0741-z

摘要: Many heat transfer tubes are distributed on the tube plates of a steam generator that requires periodic inspection by robots. Existing inspection robots are usually involved in issues: Robots with manipulators need complicated installation due to their fixed base; tube mobile robots suffer from low running efficiency because of their structural restricts. Since there are thousands of tubes to be checked, task planning is essential to guarantee the precise, orderly, and efficient inspection process. Most in-service robots check the task tubes using row-by-row and column-by-column planning. This leads to unnecessary inspections, resulting in a long shutdown and affecting the regular operation of a nuclear power plant. Therefore, this paper introduces the structure and control system of a dexterous robot and proposes a task planning method. This method proceeds into three steps: task allocation, base position search, and sequence planning. To allocate the task regions, this method calculates the tool work matrix and proposes a criterion to evaluate a sub-region. And then all tasks contained in the sub-region are considered globally to search the base positions. Lastly, we apply an improved ant colony algorithm for base sequence planning and determine the inspection orders according to the planned path. We validated the optimized algorithm by conducting task planning experiments using our robot on a tube sheet. The results show that the proposed method can accomplish full task coverage with few repetitive or redundant inspections and it increases the efficiency by 33.31% compared to the traditional planning algorithms.

关键词: steam generator transfer tubes     mobile robot     dexterous structure     task planning     efficient inspection    

标题 作者 时间 类型 操作

A dynamic model of mobile concrete pump boom based on discrete time transfer matrix method

Wu REN, Yunxin WU, Zhaowei ZHANG

期刊论文

A model reference adaptive control based method for actuator delay estimation in real-time testing

Cheng CHEN, James M. RICLES

期刊论文

Gained switching-based fuzzy sliding mode control for a discrete-time underactuated robotic system with

Hui LI, Ruiqin LI, Jianwei ZHANG

期刊论文

Application of coupled multi-body dynamics–discrete element method for optimization of particle damper

Danhui DAN, Qianqing WANG, Jiongxin GONG

期刊论文

Improving existing “reaching law” for better discrete control of seismically-excited building structures

Zhijun LI, Zichen DENG

期刊论文

3D mode discrete element method with the elastoplastic model

Wei HU, Feng JIN, Chong ZHANG, Jinting WANG

期刊论文

A “Sequential Design of Simulations” approach for exploiting and calibrating discrete element simulations

期刊论文

基于子空间的离散时滞系统辨识

Qiang LIU,Jia-chen MA

期刊论文

numerical framework for underground structures in layered ground under inclined P-SV waves using stiffness matrix

期刊论文

一种具有高电压传输比的新型Cuk矩阵变换器

张小平,朱建林,唐华平,张炳根,柳莎莎

期刊论文

Buffer capacity of granular matter to impact of spherical projectile based on discrete element method

Ying YAN, Pengfei LI, Shunying JI

期刊论文

Discrete element method modeling of corn-shaped particle flow in rectangular hopper

He TAO, Baosheng JIN, Wenqi ZHONG, Xiaofang WANG,

期刊论文

多体系统发射动力学及其应用

芮筱亭

期刊论文

Model test and discrete element method simulation of shield tunneling face stability in transparent clay

Huayang LEI, Yajie ZHANG, Yao HU, Yingnan LIU

期刊论文

High-efficiency inspecting method for mobile robots based on task planning for heat transfer tubes in

期刊论文